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The conditions that ensure that an optimal variational wave function ~b under 
general restricting requirements  satisfies the hypervirial theorem are analysed. 
Application is made to a system where the z -componen t  of angular momen-  
tum is a constant of motion and results are discussed in connection with those 
obtained via symmetry  considerations. 
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An optimal  variational wave function 4~ satisfies the equation 

(6& [(H - E)&) + (& t(H - E)S& ) = O. (1) 

If iW& is a possible variation 6q5 for a Hermit ian opera tor  W, then f rom Eq. (1) it 
can be deduced that the diagonal hypervirial theorem 

(d~l[H, W]I4> = 0 (2) 

is satisfied [1, 2]. Epstein [3] pointed out that when ~b has a certain symmetry,  then 
the condition &b = i W4~ must be replaced by 64~ = iSW~b, where S is the projector  
onto the symmetry  type in question, because possible variations have to obey their 
intrinsic symmetries.  So, we are lead into the variational calculation with restric- 
ting conditions. It  is the purpose of this note to draw attention to the fact that the 
symmetry  conditions pointed out by Epstein are a particular case of more  general 
restricting conditions. Let  us suppose that we wish to optimize a wave function ~b 
in a variational way in order to obtain a function belonging to a closed subspaee M 
of the Hilbert  space associated with our system. Then it is clear that compatible 
variations for 4~ must belong to M. Particularly, if W is a linear operator  and PM is 
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the projection operator  onto M which commutes with H, then 

<el[H, W]lr ((blH, 1~7]1r (3) 

for IYV = P M W P M .  It is evident that i rvVr is a possible variation ~r and moreover,  
in this case, the variational theorem conducts to the hypervirial theorem. When 
PM is a projector  onto a symmetry type, these results are equivalent to those 
obtained by Epstein [3] because IV& = PMWqb. If W~b belongs to the subspace 
orthogonal to M, then W = 0. According to Chen [4] it is achievable to introduce a 
variational parameter  in a wave function r by applying the evolution operator  
U(a, ao), defined as 

U(a, ao)qb(ao) = r  (4) 

which satisfies the equation 

OU 
- - = A ( a ) U  (5) 
Oa 

for A being an anti-Hermitian operator.  But there remains as an open question 
how to introduce such variational parameters when the wave functions have to 
fulfill certain requirements. The answer is simple due to the possibility of 
employing the variational wave function 

& M (a) = PMr (a) = PMU(a, ao)r (ao) (6) 

where 

OCb M = PMAq~ M (7) 
Oa 

is a variation for eM which satisfies the requirement of belonging to M. It is 
important to note that if r is normalized, then r in general, is not, because 

<r162162 
When studying certain physical systems, it is found that some operators commute 
with the Hamiltonian operator  H. In his turn, some of these commuting operators 
are Hermitian and they are associated with constants of motion. In such cases, 
variational wave functions are searched so as they are eigenfunctions of that kind 
of operators. Let  us assume that the Hermitian operator  R commutes with H. 
Then, applying the Lie identity 

[H, [R, W]] + [ W, [H, R ]] + [R, [ W, H] ]  = 0 (8) 

for any linear operator  W, we can deduce from previous discussion that the 
hypervirial theorem 

(el[H,  [R, W]]lr = 0 (9) 

will be satisfied. Assuming that our variational wave function is eigenfunction of R 
with eigenvalue r, then if Pr is the projector  onto the subspace of eigenfunctions of 
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R with eigenvalues r, we have 

P,[R,  W]4) = R P r W ~  - rP, Wd~ = 0. (10) 

In order  to illustrate preceding formal conclusions, we choose as an example that 
one given by Epstein [3], i.e. a system where the z -componen t  of angular 
m o m e n t u m  Lz is a constant of motion. Then,  if ~b is eigenfunction of Lz 

(4~l[Lz, W]l~)  = 0 (11) 

and the hypervirial operators  are {vlj = xipj}, we arrive at the tensor virial theorem 
[5, 6]. First of all we note that 

[Lz, vxx] = ihvxy (12) 

so that we are sure that 

([H, v~y]) = 0. (13) 

One and the same occurs with the remaining off-diagonal equations. On the other 
hand, f rom the equality 

[Lz, vy~] = ih(Vyy - v~x) (14) 

we can assert that if the theorem is satisfied for v~x, then it is fulfilled for V~y too. In 
conclusion, if the virial theorem and the equation 

<[H, v~]> = 0 (15) 

are satisfied, then all the other equalities which constitute the tensor virial 
theorem will do the same. But these were the results obtained by Epstein [3] via 
symmetry  considerations. 
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